Duration : 35 days | 1hr theory/day 1hr Practical

 

Module 1 : Introduction to BigData, Hadoop (HDFS and MapReduce)Introduction to Big Data and

Hadoop.

1. BigData Introduction.

2. Hadoop Introduction .

3. HDFS Introduction .

4. MapReduce Introduction.

 

 Module 2 : Deep Dive in HDFS

1. HDFS Design

2. Fundamental of HDFS (Blocks, NameNode, DataNode, Secondary Name Node)

3. Rack Awareness

4. Read/Write from HDFS

5. HDFS Federation and High Availability (Hadoop 2.x.x)

6. Parallel Copying using DistCp

7. HDFS Command Line Interface

 

 Module 2A : HDFS File Operation Lifecycle (Supplementary)

1. File Read Cycel from HDFS - DistributedFileSystem – FSDataInputStream

2. Failure or Error Handling When File Reading Fails

3. File Write Cycle from HDFS - FSDataOutputStream

4. Failure or Error Handling while File write fails

 

 Module 3 : Understanding MapReduce :

1. JobTracker and TaskTracker

2. Topology Hadoop cluster

3. Example of MapReduce Map Function Reduce Function

4. Java Implementation of MapReduce

5. DataFlow of MapReduce

6. Use of Combiner

 

 Module 4 : MapReduce Internals

1. How MapReduce Works

2. Anatomy of MapReduce Job (MR-1)

3. Submission & Initialization of MapReduce Job (What Happen ?)

4. Assigning & Execution of Tasks

5. Monitoring & Progress of MapReduce Job

6. Completion of Job

7. Handling of MapReduce Job - Task Failure - TaskTracker Failure - JobTracker Failure

 

 Module 5 :YARN

1. Limitation of Current Architecture (Classic)

2. What are the Requirement ?

3. YARN Architecture

6. Progress and Monitoring of the Job

7. Failure Handling in YARN - Task Failure - Application Master Failure - Node Manager Failure -

Resource Manager Failure

 Module 6: Apache Pig

1. What is Pig ?

2. Introduction to Pig Data Flow Engine

3. Pig and MapReduce in Detail 4. When should Pig Used ?

5. Pig and Hadoop Cluster

6. Pig Interpreter and MapReduce

7. Pig Relations and Data Types

8. PigLatin Example in Detail

9. Debugging and Generating Example in Apache Pig

 

 Module 7 : Fundamental of Apache Hive

1. What is Hive ?

2. Architecture of Hive

3. Hive Services

4. Hive Clients

5. how Hive Differs from Traditional RDBMS

6. Introduction to HiveQL

7. Data Types and File Formats in Hive

8. File Encoding

9. Common problems while working with Hive

 

 Module 8: HBase Introduction and NoSQL

 3 Hours of Detailed Class on Interview Questions.


Contact US


A : :PHILLOS,

#257, (BIIT Building),9th A Main, Near Upahaara Darshini,

 3rd Block, Jayanagar, Bangalore - 560011

 

E : : nishu.phillos@gmail.

 

Ph : : 984488 5059 / 96208 90035 / 903588 5059

 

Whatsapp : 984488 5059 / 96208 90035

 

Facebook | Linked in | Google + | Google Web


 



ANIMATION & MULTIMEDIA

 

Adobe photoshop Course


 

Adobe illustrator Course



Corel draw Course



Graphic designing Course



Infographics



DTP Course



Web designing Course



Video editing Course



Audio editing Course



2D Animation Course



3D Animation Course



 



BUSINESS ANALYTICS & REPORTING TOOLS



 

Microsoft Advanced Excel Course


 

VBA & Macros Course


 

Microsoft Access Course


 

SAS Base & Advanced Course



Clinical sas Course



Statistical SAS Course



MSBI SSIS SSRS SSAS Course



Tableau Course



Business Analytics


 

 



SAP ERP Course



 

 

SAP fico Course


 

SAP ABAP Course


 

SAP WM Course



SAP PP Course



SAP SD Course



SAP MM Course



SAP HANA Course



SAP BI BO Course


 

 



.net Course



java / J2EE Course



Android Course



Oracle Sql & Plsql Course



Sql Server Course



PHP and MYSQL Course



Sql Course



Vmware Course



Tally ERP Course



Basic Excel


 

 



Why Phillos.....?


 

In Depth technical Knowledge

 

Live Project guidence

 

Real Time Working Environment

 

100% Placement Support

 

One On One Sessions availablity

 

Fast track & Super fast track classes

 



 

 

 

 

Related Links